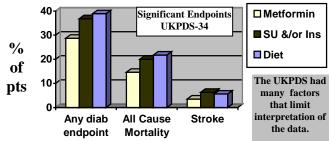
AGENTS FOR TYPE 2 DIABETES & Hypoglycemic Comparison Chart

October 2001

The RxFiles Academic Detailing Program For more information check our website www.sdh.sk.ca/RxFiles or, contact us C/O Pharmacy Department, Saskatoon City Hospital, 701 Queen St. Saskatoon, SK S7K 0M7, Ph (306)655-8506, Fax (306)655-8804; Email regierl@sdh.sk.ca

Type 2 diabetes is a **progressive disease** with modifiable risk factors. While some patients may initially be managed with <u>diet and exercise</u>, about 50% will require drug therapy within 1 year.¹ For optimal glycemic control, many patients will eventually need oral combination and/or insulin therapy. Since diabetes is a multifactorial disease, optimal care must also emphasize control of blood pressure, lipids, etc.


KEY FINDINGS FROM THE UKPDS

•The UKPDS-33 showed that intensive blood-glucosecontrol reduced the 10 year risk of **microvascular** endpoints by ~25% compared to patients allocated to the conventional treatment group.² Intensive glycemic control did <u>not</u> have a significant impact on **macrovascular** endpoints (e.g. risk of stroke or myocardial infarction), diabetes related mortality or all cause mortality. However, tight blood pressure control (UKPDS-38) reduced some macrovascular endpoints.³

•**The UKPDS-34** studied treatment of **obese Type 2** patients with diabetes followed for a mean of 10 years.⁴ **Metformin** *GLUCOPHAGE* showed the following benefits compared to conventional (primarily diet) therapy [reductions based on # of patients with endpoint]:

38% \downarrow risk of stroke; (absolute risk reduction: ARR=2.1%) **32%** \downarrow risk of any diabetes related endpoint (ARR=10.2%) **33%** \downarrow in all-cause mortality (ARR=7.1%)

Treatment with sulfonylureas (SU) and insulin did not confer the same benefits. The authors postulated that since HbA_{1c} was similar in both metformin and SU/insulin groups, glycemic control alone could not explain the risk reduction.

CHOOSING AN ORAL HYPOGLYCEMIC

Obese Versus Non-obese

• In non-obese patients, metformin or sulfonylureas (SU) are usually considered first-choice agents.

◆ In obese patients (BMI ≥30kg/m²), metformin should be considered for first-line therapy. As noted above, it was the only agent to reduce overall mortality in the UKPDS.⁴

Metformin should be avoided in patients with impaired **renal function**, hepatic disease, alcoholism, symptomatic CHF, and those undergoing intravascular radiocontrast study who are at risk of lactic acidosis.⁵ Dosage adjustment may be required in the elderly (due to declining renal function; see **Table 2**).

Table 2: Metformin Dosing In The Elderly*

Lactic acidosis associated with metformin is rare (<1:10,000 treated patients) and may not be different than the background rate in the general population.^{6,7} If metformin is used in the elderly, dosage may require adjustment based on estimated creatinine clearance (Following table derived from study of those age \geq 74yr).⁸

S.										
<u>CrCl (ml/min)</u>	Maximum Metformin Dose									
60	1,700 mg/day*									
30	850 mg/day*									
<30	contraindicated									
* Calculation of creatinine clearance (CrCl):										
<pre> •CrCl ml/minute = </pre>	(140-age) x Weight (kg)									
	Serum creatinine (umol/L) (0.814)									
◆Females: CrCl = 0	0.85 x CrCl (male)									

*There are varying opinions regarding the safety of metformin in those with reduced renal function. Some specialists are more cautious and avoid any use. The "Glitazones" are an alternative in overcoming insulin resistance.⁹

Predominent Elevation in PPBG

•Patients who have an elevated postprandial blood glucose (PPBG) > 10mmol/L and whose fasting plasma glucose (FPG) is < 7 may be considered for agents such as acarbose *PRANDASE* whose main effect is on PPBG. Repaglinide *GLUCONORM* and insulin lispro *HUMALOG* may be considered in patients who have suboptimal control of both PPBG and FPG. PPBG may be elevated early in the course of disease and there is some evidence it is related to poor macrovascular outcomes.¹⁰

Table 1: Tx GOALS – ADULT	DIABETES	**	*OPTIMAL**	SUBOPT	IMAL	INADEQUATE			
GLUCOSE CONTROL ¹¹ • HbA _{1c} q3-6 months • calibrate meter yearly	HbA _{1c} (%) FPG (mmol/L) PPBG (mmol/L)	T A R	< 7.0 4.0-7.0 5.0-11.0	7.0-8.4 7.1-10 11.1-14.0	⇔action may be	> 8.4 > 10 > 14	⇔action required		
BLOOD PRESSURE ¹² • q3-4mo	BP (mmHg)	G	< 130/80	< 140/90	necessary	> 140/90			
DYSLIPIDEMIA ¹³ • q12 months; more often for patients with heart disease	LDL mmol/L Total :HDL ratio TG mmol/L	E T	$\left\{ \begin{array}{c} < 2.5 \\ < 4 \\ < 2.0 \end{array} \right\}$	achieved; •Modif	g lipid profile; •All 3 target values should be fying lipids more effective than modifying ble ality in patients with heart disease & diabetes				

HbA_{1c} = glycosolated hemoglobin A_{1C}; **FPG** = fasting plasma glucose; **PPBG** = postprandial $(2hr)^{15}$ blood glucose; **BP** = blood pressure; **TG** = triglycerides ****Target treatment goals need to be individualized** with consideration given to life expectancy, co-morbidity and risk of hypoglycemic side effects.

COMBINATION ORAL THERAPY

Combination therapy will be required in most Type 2

patients to maintain glycemic control. Many combinations have been studied in terms of their effects on glucose control. Other effects such as weight gain, changes in lipid profile, and additive risk of hypoglycemia have also been evaluated.

•A variety of patient factors should be considered in agent selection. (see Table 6 – Individualization of Therapy). •Some dual combination regimens have been studied (See Table 7: Combination Therapy). Combinations of more than 2 agents may also be used, but data on these combinations is not available. •The combination of repaglinide & sulfonylureas is not recommended.16

INSULIN IN TYPE 2 DIABETES

*Most current guidelines suggest that when diet, exercise and oral agents fail to provide glycemic control, insulin is **indicated.** Evidence regarding this is currently limited to studies evaluating glycemic control. Studies on the effects of insulin on clinical outcomes such as morbidity and mortality have not been done. The UKPDS found that insulin therapy was often eventually necessary for glycemic control. It found that tight glycemic control reduced the risk of microvascular complications. Hyperinsulinemia did not appear to contribute to cardiovascular risk, an issue that is still under some debate. Drawbacks to insulin therapy include the side effects of weight gain, hypoglycemia and patient reluctance to use insulin.

 Combinations of oral hypoglycemics and insulin are likely preferable to treatment with insulin alone. A combination approach has an insulin sparing effect and usually leads to improved glycemic control. Some combinations are associated with less hypoglycemia and less weight gain.¹⁷ Inclusion of metformin in the regimen minimizes the problems of weight gain and hypoglycemia. The **FINFAT** study compared different agents combined with bedtime insulin and found that a reduction in HbA_{1c} of 2.5% was greater for metformin than for other studied combinations (SU, SU+metformin, morning insulin).¹⁸

•Adding bedtime insulin to oral hypoglycemics is commonly

recommended. This approach allows lower doses of insulin to be used, and keeps the insulin regimen simple. (See page 3 – Approach ... Add Insulin Therapy.)

Table 3: NOTES ON NEWER AGENTS (see also Table 8)

Thiazolidinediones (TZDs)

•Agents: rosiglitazone AVANDIA and pioglitazone ACTOS •TZDs are insulin sensitizers and are moderately effective in controlling hyperglycemia. Adverse effects include weight gain and edema (~4.8% versus 1.2% for placebo)¹⁹; caution in patients with heart failure/hypertension. Incidence of edema was higher in patients also on insulin.

•Patients on TZDs require monitoring of liver function **tests** (e.g. ALT) at baseline, q2 months during the 1st year of therapy and periodically thereafter. Therapy should not be initiated in patients whose ALT is >2.5x the upper limit of normal and should be discontinued in patients whose ALT rises >3x upper limit of normal. (Troglitazone, the first agent in this class was withdrawn from the market due to severe hepatotoxicity and ≥ 60 deaths.)

•There is some hope that if TZDs are **used early** in the course of Type 2 diabetes, they may be able to alter the progression of the disease.

•Studies on morbidity/mortality outcomes not yet available Long-term safety remains to be established

Acarbose PRANDASE

•Acarbose is useful in reducing peak postprandial blood glucose (PPBG) concentrations.

- •Side effects of flatulence, abdominal discomfort and diarrhea limit patient acceptance of this agent. These side effects can be minimized by starting with low dosages (e.g. 25mg with each meal) & titrating up over several months.
- *Safety advantages: it does not cause hypoglycemia
- •Studies on morbidity/mortality outcomes not yet available
- Long-term safety remains to be established

Repaglinide GLUCONORM

•Repaglinide is rapid but short acting and is useful in lowering **PPBG** and HbA_{1c} . It has a lower risk of hypoglycemia than sulfonylureas and appears to be well tolerated. It may be especially useful in individuals with irregular eating habits.

•Studies on morbidity/mortality outcomes not yet available Long term safety remains to be established

We would like to acknowledge the following reviewers: Dr. S. Juta (SDH-Diabetes Clinic), Dr. T. Laubscher CCFP (SDH-FM), Dr. J. Dillon (Internal Med, Iowa), L. Guirguis (Dove Project, Edmonton) M. Zwack (Pharmacist, Prince Albert) & the RxFiles Advisory Committee. Loren Regier BSP, BA DISCLAIMER: The content of this newsletter represents the research, experience and opinions of the authors and not those of the Board or Administration of Saskatoon District Health (SDH). Neither the authors nor Saskatoon District Health nor any other party who has been involved in the preparation or publication of this work warrants or represents that the information contained herein is accurate or complete, and they are not responsible for any errors or omissions or for the result obtained from the use of such information. Any use of the newsletter will imply acknowledgment of this disclaimer and release any responsibility of SDH, it employees, servants or agents. Readers are encouraged to confirm the information contained herein with other sources. Copyright 2001 – Saskatoon District Health.

References available on website or on request

Table 4: NOTES ON COMORBIDITY ⇒ diabetics are at 2-4-fold higher risk for cardiovascular disease than non-diabetics Pharmacological Treatment of HYPERTENSION

•Benefits of intensive hypertensive control may have a greater impact on reducing macrovascular morbidity (e.g. stroke) and mortality than intensive blood glucose control.^{20,21}

*Up to 3 antihypertensives often needed to meet target. {See 1999 Canadian Recommendations–CMAJ 1999;161(12 Suppl):S1}

Pharmacological Treatment of DYSLIPIDEMIA

•*The lower the better*; potential outcome benefit of lowering lipids is greater in diabetics than non-diabetics. (good evidence for 2° prevention; studies for 1° prevention ongoing)²²

•Patients with diabetes without previous MI are as high-risk for an event as nondiabetic patients with previous MI.^{23,13}

ASA to Prevent CORONARY ARTERY DISEASE (CAD)

•Low-dose ASA (81-325mg po OD) is recommended for all patients (age \geq 30 yrs) with diabetes unless contraindicated.²⁴

Treatment of MICROALBUMINURIA (MAU)

•MAU is a marker for diabetic nephropathy and cardiovascular disease. With early recognition & therapy, diabetic risk reduction does occur.

•Treatment of MAU: **ACE Inhibitor** – start low & titrate up; Angiotensin II Receptor Blockers (ARBs) may be considered if patients unable to tolerate ACEI. Recent data suggest that the ARBs may protect against the progression of kidney disease.^{25,26,27} Early treatment of hypertension is also important.

Table 5: APPROACH TO MANAGEMENT OF TYPE 2 DIABETES

Nonpharmacologic Therapy

• Lifestyle Modifications & Patient Education are important at all levels!!! ^{28,29}

If individualized goals for glucose are not achieved in 2-4 months, ⇒reassess; advance to next level of therapy See Health Canada's Food & Fitness Guides

Oral Hypoglycemic Monotherapy

◆If obese (BMI ≥30)

- ⇒ start metformin (MF) 500mg po OD or BID
 - (↑dose over 3-4 weeks; usual ≤2,000mg/day; lower doses in elderly-see Table 2)
- \Rightarrow alternative agents used if metformin contraindicated/not tolerated
- (e.g. acarbose, sulfonylureas, repaglinide, "glitazones"; see chart)

If non-obese

- ⇔ start sulfonylurea (SU) or metformin (↑dose over 3-4 weeks)
- \Rightarrow consider acarbose or repaglinide if main target is **PPBG**
- ⇒ alternative agents such as "glitazones" may also be considered (note these agents can take a long time before effect seen (8-16 weeks). There are theoretical advantages to early use, but await studies on morbidity and mortality outcomes

Repeat HbA_{1c}; Reassess lifestyle modifications in 2-4 months, \Rightarrow If targets for glucose control not achieved, advance combination therapy (Combination therapy will be required in most Type 2 patients)

Oral Combination Therapy

a variety of 2-drug (& sometimes 3 drug) combinations may be considered ______
combination of repaglinide and sulfonylureas not usually recommended

Repeat HbA_{1c} ; *Reassess lifestyle modifications in 2-4 months,* \Rightarrow *If targets for glucose control not achieved, advance to next level of therapy*

Add Insulin Therapy +/- Oral Agents

- ◆Option 1: Bedtime insulin (e.g. Humulin N/Novolin N) + daytime oral hypoglycemics
 ⇒ if on SU + other oral agent, may consider discontinuing / reducing the SU
 - add intermediate acting insulin, 10-15units at HS (initial max 0.25units/kg) - 1 insulin dose by 2 units every 3-4 days until fasting glucose of 4 -7

-may result in better control, lower insulin dose, less weight gain than insulin alone -if target BG not achieved at 30units/day, or if daytime BG rises, may switch to split-mixed insulin or a more intensive regimen (usual range: 0.25-1unit/kg/d)

• Option 2: Switch to insulin therapy 1-4x/day

may discontinue oral hypoglycemic agents -adjust insulin dose and frequency to achieve target levels

e.g. Split-mixed insulin regimen

nits/kg) high doses of insulin due to insulin resistance (max 400U/day in UKPDS)

Some patients may

eventually require very

-estimate total starting daily dose (0.3-0.6 units/kg)

-divide daily dose: 2/3 in morning before breakfast; 1/3 in evening before supper -divide each dose: 2/3 intermediate-acting & 1/3 short-acting insulin (or 30/70 mix)

(Note: insulin temporarily indicated in any patient with metabolic decompensation, severe fasting hyperglycemia, or severe illness.)

	BMI								V	VEI	GHT	C (Kg	g; <i>lbs</i>	5)						
		2	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130
(K	cg/m)	<i>99</i>	110	121	132	143	154	165	176	187	<i>198</i>	209	220	231	242	253	264	275	286
	150	59	20	22	24½	26½	29	31	33	35½	38	40	42	44½	46½	49	51	53	55½	58
HE	155	61	18½	21	23	25	27	29	31	33	35½	37½	391⁄2	41½	431⁄2	46	48	50	52	54
HEIGH	160	63	17½	19½	21½	23½	251⁄2	27	29	31	33	35	37	39	41	43	45	47	49	51
Ηť	165	65	16½	18½	20	22	24	26	271/2	291⁄2	31	33	35	36½	38½	401⁄2	42	44	46	48
T (170	67	15½	17	19	21	221⁄2	24	26	271/2	291⁄2	31	33	34½	36	38	40	41½	43	45
Cm;	175	69	14½	16	18	19½	21	23	24½	26	28	291⁄2	31	321⁄2	34½	36	371⁄2	39	41	421⁄2
	180	71	14	15½	17	18½	20	21½	23	24½	26	28	29	31	321⁄2	34	351⁄2	37	38½	40
inches	185	73	13	14½	16	17½	19	201⁄2	22	23½	25	26	28	29	301⁄2	32	331⁄2	35	36½	38
les)	190	75	12½	14	15	16½	18	19½	21	22	23½	25	26	271⁄2	29	30½	32	33	34½	36
	195	77	12	13	14½	16	17	18½	19 ½	21	22½	23½	25	26	271/2	29	30	31½	33	34
Un	derwe	ight	= <1	8.5kg	g/m^2 ;	Norr	nal =	18.5	-24.9	kg/m ²	; Ove	erwei	ght =	25-2	9.9kg	g/m^2 ;	Obes	e = ≥	:30kg	$/m^2$

Table 6: Individualization of Drug Therapy: Special Considerations									
Patient Factor	Consider ⇒								
Renal failure	"Glitazones", Repaglinide; also tolbutamide or gliclazide ³⁰								
Hypoglycemia	Metformin, "Glitazones", Acarbose; also Repaglinide								
Obese	Metformin; Acarbose; also "Glitazones"								
Irregular mealtimes	Repaglinide (may be preferred over SU)								
PPBG >10mmol/l	Repaglinide or Acarbose								
& FPG minimally ↑'d	Insulin lispro HUMALOG (if PPBG very high)								

Table 7: Combination Therapy/Insulin Therapy in Type 2 Diabetes^{19,31,32,33}

Drug combination	↓in	hypo-	Wt	Comments
b	HbA _{1C}	glyc.		(long-term outcomes not well studied!)
SU + MF	$\downarrow \downarrow \downarrow$	$\uparrow\uparrow$	Ŷ	◆if SU initial agent, may add MF or a TZD;
SU + TZD ³⁵	$\downarrow\downarrow$	$\uparrow\uparrow$	$\uparrow\uparrow$	(SU+MF may \downarrow HbA _{1c} by additional 1.7%;
SU + acarbose	\downarrow	$\uparrow\uparrow$	Ŷ	one study found ↑mortality with combination ³⁴) ◆if MF initial agent, may add SU or repaglinide
MF+ repaglinide ³⁶	$\downarrow\downarrow$	↑	Ŷ	•MF combos generally result in less weight gain
MF+ TZD ^{37,38}	$\downarrow\downarrow$	\uparrow	Ŷ	than SU combinations; •MF+pioglitazone had
MF+ acarbose ³⁹	\downarrow	-	↓	positive lipid effects; ◆MF+acarbose: ↓ weight /
TZD + acarbose	\downarrow	\uparrow	Ŷ	PPBG but ↑GI SEs; ◆for hypoglyc. on acarbose: must treat with glucose as sucrose not absorbed
Insulin monotherapy	$\downarrow \downarrow \downarrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	•tight BG control but hypoglycemia/weight gain
Insulin + SU	$\downarrow\downarrow\downarrow\downarrow$	$\uparrow\uparrow$	$\uparrow\uparrow$	 may improve glycemic control over insulin alone; caution in elderly due to hypoglycemia
Insulin + MF (FINFAT STUDY ¹⁸)	↓↓↓	ſ	Ť	•overcomes insulin resistance; MF has positive effect on wt & lipids; preferred in obese patient; superior to insulin+SU; insulin sparing ~20-25%
Insulin+ pioglitazone or rosiglitazone*	$\downarrow\downarrow^{40}$	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	•overcomes insulin resistance; effective but more study needed (e.g. ↑ risk of edema/HF ⁴¹)
Insulin+ repaglinide	$\downarrow\downarrow$	$\uparrow\uparrow$	$\uparrow\uparrow$	• option to \downarrow PPBG
Insulin + acarbose	$\downarrow\downarrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	•recommended to \downarrow PPBG when diet high in
				CHOs; may also \downarrow weight & triglycerides

◆some **3-drug regimens** useful for glycemic control but not well studied (e.g. Insulin+SU+MF) **BG**= blood glucose **CHO**= carbohydrate **FPG**= fasting plasma glucose **HbA**_{1C} = glycosylated hemoglobin **HF**= heart failure **MF**= metformin **PPBG** = postprandial blood glucose **SE**= side effects **SU**= sulfonylurea **TZD**= pioglitazone & rosiglitazone **Wt**= weight *official labeling: "not indicated"

MF target dose in UKPDS (age ≤65):

1700mg am + 850mg @supper

Table 8: HYPOGLYCEMIC AGENTS - COMPARISON CHART^{19,42,43,44,45,46,47,48}

Prepared by: Loren Regier, Sharon Downey, Brent Jensen-www.sdh.sk.ca/RxFiles - Oct/2001

NAME		EFFECTS ON				DRUG	Prepared by: Loren Regier, Sharon Downey, Brent	INITIAL &	USUAL DOSE	\$ / 30			
/DOSAGE FORMS	KINETICS	FPG	PPBG	1	LDL		TGs	Wt	INTERACTION	COMMENTS	(Max.) DOSE	RANGE	Days
SULFONYLUREAS ((SU) – stimul	ate ins	sulin r	elease f			increa	se per		ization (↑ #/sensitivity of insulin receptors?); redu	ce hepatic gluconeo	genesis	
Chlorpropamide	P = 6-8h	L chlorpi	ropamie	de not re	ecomm	ended	due		Numerous:	Does not correct impaired 1st phase insulin response; many (\sim 75%) require 2 nd agent for adequate control (e.g.	100mg od	100mg po od	10.00
DIABINESE (100, 250mg scored tab)				etinopat					 <u>↑ Hypoglycemic</u> effect with: EtOH, 	+ metformin or TZD); \sim 1 st choice option for lean patient	(500mg od)	250mg po od	9.00
Gliclazide X	P = 4-6h								NSAIDs, salicylates,	Hypoglycemia: most with chlorpropamide & glyburide	40mg (160mg bid)	80mg po bid	25.00
DIAMICRON 80mg tab	P = 4-00 D=10- 24h		1					↑↑	sulfonamides, MAOIs, cimetidine.	(see note below); least with tolbutamide & gliclazide ⁴⁹ Caution in elderly (hypoglycemia risk) & obese (wt gain).	30mg (120mg od)	60mg MR po od	25.00
DIAMICRON MR 30mg Glyburide	O=15-60min	+ *	\downarrow	$\uparrow\downarrow$	-	-	-	11	 β-Blockers may 	Require consistent food intake to avoid problems with	1.25-2.5mg od	5mg po od	8.00
DIABETA	P=2-4h						,	41	mask hypoglycemia	hypoglycemia ([†] risk: elderly, debilitated, malnourished) SE: Wt gain, headache, dizziness, sulfa skin reactions	1.25-2.5mg ou	5mg po bid	9.00
(2.5, 5mg scored tab)	D =12- 24h		Т	otal Wt vs >6k					 Disulfiram rx. with EtOH, mostly 	(rash/photosensitivity ~1%), GI side effects in 1-3%;	(10mg bid)	10mg po bid	11.00
Tolbutamide	P = 3h	Clim		1	ř –	1			with chlorpropamide	concerns with cardiac toxicity and hyperinsulinemia.	250mg od	500mg po bid	9.00
ORINASE (500mg scored tab)	D =6-12h			de AMA od(4);2n				cored	• rifampin \downarrow effect	Reduce dose if hypoglycemia or renal/hepatic dysfx Dose titration q1-2 weeks	(1000mg tid)	500mg po tid	11.00
	ease insulin s		-	-		-	•	& uti	lization: reduce her	patic glucose production; \downarrow morbidity & mortality	in obese patients (U	(KPDS-34)	
Metformin (MF)									• EtOH and	Does not by itself cause hypoglycemia	250-500mg od	500mg po bid	11.00
GLUCOPHAGE		\downarrow	\downarrow	$\downarrow\downarrow$	\downarrow	\uparrow	\downarrow	-/↓	cimetidine ↑ effect • contrast media	Possible wt loss vs wt gain; SE: To avoid GI SEs, start low & titrate up q2-4wk	(850mg tid)	500mg po tid	13.00
(500, 850mg tab)	P = 3h $D = 8-12h$					2 VO. 01	fect o	n	(long-term \downarrow B ₁₂ &	Anemia 6-8:100 (due to B12 malabsorption)	UKPDS: 1700mg po	850mg po bid	17.00 22.00
	D = 8 - 12n						z weig		folate absorption)	Avoid if severe renal dysfx/CHF or hepatic disease	D dosing option for large		22.00
					F				{Caution if $CrCl \leq 60ml/min$ }	(lactic acidosis 1:10,000) ⁸ . +SU, TZD, Ins., CMBA Elderly : dose reduction required (see Table 2). ⁸	olerance (dyspepsia, na	usea & diarrhea)	
α GLUCOSIDASE IN	HIBITORS	– inhi	ibit α-	glucosi	dases i	in bru	sh bor	der of		event hydrolysis & delay digestion of carbohydrat	es (Tx hypoglycemia	with glucose/Insta-	gluc)
Acarbose	Meal-time			T imally a					 ↓ digoxin effect ◆ Cholestyramine & 	Does not by itself cause hypoglycemia	25mg od	50mg po tid	31.00
PRANDASE (50,100mg scored tab)	dosing; may	lucuro		linnany a		, mom	Ι.		cathartics ↑ effect	↑ Liver enzymes = 3% with acarbose; monitor. (Caution as may accumulate in chronic renal failure.)	(100mg tid)	100mg po tid	41.00
Miglitol (not yet ×	take several weeks for	\downarrow	$\downarrow\downarrow\downarrow$	\downarrow	-	-	-/↓	-/↓	 amylase & pancreatic enzymes 	SE: GI intolerance: flatulence >41%, diarrhea >28%,	25mg od	25mg po tid	n/a
available in Can.)	max. effect	migli	itol wel	labsorb	ed				$\downarrow \text{ effect } \bullet \downarrow \text{Fe}^{++}?$ (sucrose not absorbed)	Maximal effect takes weeks; ↑ dose q4-8wks	(100mg tid)	50mg po tid	n/a
GLYSET (25,50,100mg tab)		07 60		ONES?			noitin			ROLE : useful in pts with PPBG ; + SU, MF; (+Ins.?) lucose & peripheral insulin uptake ; ~ 4 + weeks	bofore offect (odius	t dose at ~3 mont	he)
Pioglitazone 🔹				IONES	- 1115			el S: 🗸	Cholestyramine ↓	More effective in obese or hyperinsulinemia patients	15mg od	15mg po od	92.00
ACTOS	Delayed action	\downarrow	\downarrow	\downarrow	-	1	↓	-/↑	absorption ~70%	Does not by itself cause hypoglycemia; resumption of	0	30mg po od	92.00
(15, 30, 45 mg tab)	Onset ~3wks								 Hepatic CYP 2C8 rosiglit. has no 	ovulation in anovulatory premenopausal women SE: Edema 4.8% (HF;HTN); Wt gain; 1% mild anemia	(45mg/day)	45mg po od	92.00
Rosiglitazone «	Max effect		1	1	52		71	<u>ب</u>	effect on CYP3A4	(due to hemodilution?);monitor liver fx (ALT) q2mo in	4mg od	4mg po od	92.00 183.00
AVANDIA (2, 4, 8mg tab)	in 8-16 wks	\downarrow	\downarrow	\downarrow	_/↑	_/↑	-/↓	-/	• \downarrow effect of oral	1 st yr ; pioglitazone may have more +ve lipid effects ^{50,51}	(4mg bid) bid dose ~more effective (53)	4mg po bid 8mg po od	185.00 106.00
								4	contraceptives?	ROLE : + MF,SU; (possibly alone or + Ins. but [↑] HF risk)			
CARBAMOYL BENZ Repaglinide		DERI		VES (C	VIBA S	s) — sh I	ort-ac	ung n	nsulin secretagogue • CYP3A4	; bind to β cell to stimulate insulin release at differ Restores 1 st phase insulin release - (↓ PPBG)	0.5mg tid if no	0.5mg po tid	34.00
GLUCONORM	0 10 1								inhibitors ↑ effect:	Restores 1 phase insulin release - (\checkmark PPBG) Rapid, short duration $\Rightarrow \downarrow$ risk of hypoglycemia vs SUs	previous drug tx or	1mg po tid	35.00
(0.5, 1, 2mg tab)	O = <10min P=60-90min		$\downarrow\downarrow$	$\downarrow\downarrow$	_	_	_	_/个	azole antifungals & erythromycin	option in elderly; greater <u>flexibility with food intake</u>	if HbA _{1c} $<8\%$;	2mg po tid	36.00
	D = ~2-4h	₩		**				-/ I	 <u>CYP3A4 inducers</u> 	If stopping other hypoglycemic agents, begin next day and watch for hypoglycemia	(4mg qid)	4mg po tid	65.00
									$\frac{\downarrow \text{ effect}}{\text{carbamaz & rifampin}}$	ROLE : alone or $+ MF$, TZD, or Ins.	Flexibility with food in skip meal; take extra o		
		1	1	1		1			carbanaz & manphi		, , , , , , , , , , , , , , , , , , ,		

\$ Retail *Cost to Consumer* based on acquisition cost, markup & dispensing fee in Sk; Lowest generic price used where available. \P = Exception Drug Status in SK χ = Non-formulary in SK; '+' denotes combination options BP= blood pressure DOC= drug of choice dysfx= dysfunction EtOH= alcohol FPG= fasting plasma glucose GI= gastrointestinal HbA_{1C} = glycosolated Hemoglobin A_{1C} (reflects glycemic control over prior 8-10 weeks) HDL= high density lipoprotein HF= heart failure Ins.= Insulin <u>KINETICS</u>: O= onset P= peak D= duration; LDL= low density lipoprotein PPBG= postprandial blood glucose SE= side effects Wt= weight * Drugs that may cause hyperglycemia and loss of diabetic control: corticosteroids, diuretics (high-dose thiazides), estrogens, phenothiazines, phenytoin, sympathomimetics (decongestants) & thyroid products. Beta-blockers minimal risk of altering glucose control but may alter/mask hypoglycemic response. Pregnancy. Encourage diet, moderate exercise; <u>Avoid</u> oral hypoglycemics; Add insulin as needed if FBG >5.3 & 2hr PPBG >8.9. Hypoglycemia risk -UKPDS: risk of ≥1 MAJOR hypoglycemic events/yr (ITT): chlorpropamide=1%, glyburide=1.4%, insulin 1.8%; risk of ANY hypoglycemic event/yr chlorprop.= 16%, glyburide=21%, insulin 28%. Oral agents +/- insulin: with progression of Type 2 diabetic disease, combination therapy with oral agents &/or addition of insulin to the regimen may eventually be required. PPBG may better reflect risk of cardiovascular disease and all-cause mortality than FBG¹⁰; FBG and HbA_{1c} are greater predictors of microvascular complications. ¹ Anonymous. Overview of 6 years' therapy of type II diabetes: a progressive disease (UKPDS 16). Diabetes 1995;44:1249-58.

- ² Anonymous. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and the risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53.
- ³ Anonymous. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes (UKPDS 38). BMJ 1998:317:703-13.

⁴ Anonymous. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854-865.

⁷ Lalau JD and JM Race. Lactic acidosis in metformin therapy. Drugs 1999;58 Suppl 1:55-60.

⁸ Lalau JD and Race JM. Metformin and lactic acidosis in diabetic humans. Diabetes, Obesity and Metabolism 2000;2:131-137.

⁹ Drexler AJ, Robertson C. Type 2 diabetes: how new insights, new drugs are changing clinical practice. Geriatrics 2001;56(6):20-33.

¹⁰ Hanefeld M, Temelkova-Kurktschiev T. The postprandial state and the risk of atherosclerosis. Diabet Med 1997;14(suppl 3):S6-S11.

¹¹ Meltzer S, Leiter L, Daneman D. et al 1998 Clinical practice guidelines for the management of diabetes in Canada. CMAJ 1998;159 (8 Suppl).

¹² Feldman RD, Campbell NRC, Larochelle P et al. 1999 Canadian recommendation for the management of hypertension. CMAJ 1999;161 (12 Suppl).

¹³ Fodor G, Frohlich J, Genest J, McPherson R. for the working group on hypercholesterolemia and other dyslipidemias. Recommendations fort the management and treatment of dyslipidemias. CMAJ 2000;162(10):1441-7.

¹⁴ Pyorala K, Pedersen TR, Kjekshus J, et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. a subgroup analysis of Scandanavian Simvastatin Survival Study (4S). Diabetes Care 1997;20(4):614-20.

¹⁵ ADA Consensus Statement: Postprandial Blood Glucose. Diabetes Care 2001;24(4):775-778.

¹⁶ Carlton F. Recent advances in the pharmacologic management of diabetes mellitus. Emerg Med Clinics of NA 2000;18(4):745-753.

¹⁷ Hermann LS. Optimizing therapy for insulin-treated Type 2 Diabetes Mellitus. Drugs & Aging 2000;17(4):283-94.

¹⁸ Yki-Jarvinen H, Ryysy L, Nikkila K, et al. Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus: a randomized controlled trial. Ann Intern Med 1999;130:389-96.

¹⁹ Micromedex 2001 – Volume 107 – computer drug data base.

²⁰ White WB, Prisant M, Wright JT. Management of patients with hypertension and diabetes mellitus: advances in the evidence for intensive treatment.

²¹ Yki-Jarvinen H. Management of Type 2 Diabetes Mellitus and Cardiovascular Risk: Lessons for intervention trials. Drugs 2000;60(5):975-83.

²² Best JD, O'Neal DN. Diabetic Dyslipidaemia: Current treatment recommendations. Drugs 2000;59(5):1101-11.

²³ Hafner S, Lehto S, Onnemaa T, Pyorala K et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-34.

²⁴ Colwell JA. Aspirin therapy in diabetes is underutilized. Diabetes Care 2001;24(2):195-6.

²⁵ Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001 Sep 20;345(12):870-8.

²⁶ Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001 Sep 20;345(12):861-9.

²⁷ Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001 Sep 20;345(12):851-60.

²⁸ Canada's food guide to healthy eating. Website: <u>http://www.hc-sc.gc.ca/hppb/nutrition/pube/foodguid/index.html</u>

²⁹ Health Canada's Fitness and Healthy Living. Website: http://www.hc-sc.gc.ca/hppb/fitness

³⁰ Charpentier G, Riveline JP, Varroud-Vial M. Management of drugs affecting blood glucose in diabetic patients with renal failure. Diabetes Metab 2000;26 Suppl 4:73-85

³¹ Hannele Y. Combination therapies with insulin in type 2 diabetes. Diabetes Care 2001;24(4):758-67.

³² Garber AJ. Strategies for better diabetes control in the US. Drugs 1999;58 (Suppl 1):61-69.

³³ Rosenstock J. Management of type 2 diabetes mellitus in the elderly. Drugs & Aging 2001;18(1)31-44.

³⁴ Fisman EZ, Tenenbaum A, Boyko V, Benderly M, et al. Oral antidiabetic treatment in patients with coronary disease: time-related increased mortality on combined glyburide/metformin therapy over a 7.7-year follow-up. Clin Cardiol. 2001 Feb;24(2):151-8.

³⁵ Gale, EAM. Lessons from the glitazones: a story of drug development. Lancet 2001;357:1870-75.

³⁶ Moses R, Slobodniuk R, Boyages S, Colagiuri S et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 1999 Jan;22(1):119-124

³⁷ Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus. JAMA 2000;283(13):1695-1702.

³⁸ Einhorn D, Rendell M, Rosenzweig J, Egan JW et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The pioglitazone 027 study group. Clin Ther 2000 2000;1395-1409.

³⁹ Rosenstock J, Brown A, Fisher J, Jain A et al. Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. Diabetes Care 1998;21(12):2050-2055.

⁴⁰ Raskin P, Rendell M, Riddle MC et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001 Jul;24(7):1226-32

⁴¹ Krentz AJ, Bailey CJ, Melander A. Thiazolidinediones for type 2 diabetes: new agents reduce insulin resistance but need long term clinical trials. BMJ 2000;321:252-3.

⁴² Chehade AM, Mooradian AD. A rational approach to drug therapy of type 2 diabetes mellitus. Drugs 2000;60(1):95-113.

⁴³ Drug Information Handbook. Lacy CF et al (editors). American Pharmaceutical Association. Lexi-Comp Inc, Hudson Ohio, 1999-2000 edition.

⁴⁴ Boctor, MA. Diabetes Mellitus in Therapeutic Choices (3rd edition). Gray, Jean (editor). Canadian Pharmacists Association. Web-com Ltd, Ottawa, ON, 2000.

⁴⁵ Management of Type II Diabetes. Clinical Trends in Pharmacy Practice, 3rd issue, 1997 (p46-52).

⁴⁶ Campbell IW. Antidiabetic drugs present and future. Drugs 2000; 60 (5): 1017-28.

⁴⁷ Rendell MS and Kirchain WR. Pharmacotherapy of Type 2 Diabetes Mellitus. Ann Pharmacother 2000; 34:878-95.

⁴⁸ Yki-Jarvinen, H. Management of Type 2 Diabetes Mellitus and cardiovascular risk- lessons from intervention trials. Drugs 2000; 60(5): 975-83.

⁴⁹ Graal MB, Wolffenbuttel HR. The use of sulphonylureas in the elderly. Drugs and Aging 1999;15(6):471-81.

⁵⁰ Gegick C, Altheimer M. Comparison of effect of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001;7:162-169.

⁵¹ Blickle J. Thiazolidinediones: donnees cliniques et perspectives (French language). Diabetes Metab 2001;27:279-285.

⁵² Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone monothreapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001;86:280-8.
 ⁵³ Phillips LS, Grunberger G, Miller E, Patwardhan R, et al.. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care. 2001 Feb;24(2):308-15.

⁵ Luft F. Lactic acidosis update for critical care clinicians. J Am Soc Nephrol 2001;12:15-19.

⁶ Stang M, Wysowski DK, Butler-Jones D. Incidence of lactic acidosis in metformin users. Diabetes Care 1999;22:925-7.