Hypoglycemia

ANTI

Effect on Outcomes*

<table>
<thead>
<tr>
<th>ffect</th>
<th>Death / Other Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

B1C

-

GI vs:

RxFiles Diabetes Landmark Trials Summary

May have to consider balance of potential benefits & harms.

Less (NPH HS + MF)

Intensity:

More (Multiple daily doses)

Major trials to findings/Outcomes*

<table>
<thead>
<tr>
<th>UKPDS-33,38,40 (ADOPT, some use in ADVANCE)</th>
<th>ADVANCE</th>
<th>UKPDS-33,38,40 (ADOPT)</th>
<th>ProACTIVE</th>
<th>Meta-analysis, RECORD interim, ADOPT, DREAM</th>
<th>ACE (Prevention trial: Stop-NIDDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-analysis, RECORD interim, ADOPT, DREAM</td>
<td>ProACTIVE</td>
<td>Meta-analysis, RECORD interim, ADOPT, DREAM</td>
<td>ACE (Prevention trial: Stop-NIDDM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of Death / Major CV*

<table>
<thead>
<tr>
<th>Risk of Hypoglycemia</th>
<th>Risk of HF / Edema</th>
<th>Risk of Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X23.24</td>
<td>X23.25</td>
</tr>
<tr>
<td>X22.23</td>
<td>X26.25</td>
<td>X27.28</td>
</tr>
<tr>
<td>X25.27</td>
<td>X28.29</td>
<td>X30.31</td>
</tr>
<tr>
<td>X31.32</td>
<td>X33.34</td>
<td>X35.36</td>
</tr>
</tbody>
</table>

Effect on GI tolerability

<table>
<thead>
<tr>
<th>Effect on GI tolerability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Other</th>
<th>Metformin (MF) Glucophage, Glicl孜on</th>
<th>Sulfonylureas</th>
<th>TZDs</th>
<th>Meglitinides</th>
<th>DDP-4 Inhibitors</th>
<th>GLP-1 Agonists (Subcut)</th>
<th>SGLT-2 Inhibitors</th>
<th>Insulin in T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TID dosing</td>
</tr>
<tr>
<td>TID dosing</td>
</tr>
</tbody>
</table>

Overall

<table>
<thead>
<tr>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Drugs that lower blood glucose come with various levels of evidence regarding their balance of benefits & harms. This chart relies on current evidence, especially from randomized controlled trials that have evaluated patient-oriented outcomes. Direct comparisons between agents have not been done so one is left to evaluate each drug for its relative advantages & disadvantages. **A1C will vary depending on dose, combinations & initial A1C.*

Copyright 2019 – RxFiles, University of Saskatchewan www.RxFiles.ca Disclaimers: http://www.rxfiles.ca/rxfiles/modules/miscellaneous/copyright.aspx
Death/MACE (MACE: Major adverse cardiovascular event)
1. Drug manufacturers must establish CV safety (one-sided upper boundary of 95% CI ≤ 1.3) vs comparator (typically placebo) in a RCT for all new agents in ↑ CV risk patients.
2. Metformin vs conventional diet; obese ≥120 IBW & small sample n=753; ↓ all-cause mortality NNT 14/10.7yr, and ↓ MI NNT=14/10.7yr.
3. Intensive HbA1c target (vs standard HbA1c target); MACE 10% vs 10.6% p=NS, all-cause mortality 8.9% vs 9.6% p=NS. ADVANCE
4. Intensive therapy (chloorpropamide, glipizide, glyburide or insulin) vs conventional diet; all-cause mortality 17.9% vs 18.9% p=NS, MI 14.7% vs 17.4% p=NS, and stroke 5.6% vs 5% p=NS. ADVANCE
5. SU 2nd or 3rd generation vs control (diet, placebo, other antihyperglycemic); all-cause mortality OR 1.12 (0.96-1.3, l²=0%), CV mortality OR 1.12 (0.87-1.42, l²=12%), MI OR 0.92 (0.76-1.12, l²=NR), stroke OR 1.16 (0.81-1.66, l²=NR).
6. Metformin vs glipizide; Chinese, small sample n=304, & medically undertreated 100% CAD, but ≤10% taking ACEIs; Metformin ↓ MACE NNT=10/5yr.
7. Pioglitazone vs placebo; T2DM & high CV risk; ↓ MACE NNT=50/2.9yr. PROACTIVE insulin resistance & recent TIA/stroke; ↓ MACE NNT=36/4.8yr. IRIS
8. Rosiglitazone vs placebo; ↑ MACE 2.9% vs 2.1% p=0.08 (NS), trial stopped 5 mons early. DREAM ↑ MI NNH=167 & CV death 0.87% vs 0.39% p=0.06. Rosiglitazone vs glyburide ↑ MACE NNH 63/4yr.
9. Acarbose vs placebo; impaired glucose tolerance; ↓ MACE NNT 40/3.3yr. STOP-NIDDM Acarbose vs placebo; coronary heart disease; (Chinese) HR 0.98 95% CI, 0.86-1.11, p=0.73.
10. Saxagliptin vs placebo; MACE 7.3% vs 7.2%, non-inferior (p=0.001), but not superior (p=0.99). SAVOR-TIM3
11. Alogliptin vs placebo; MACE 11.3% vs 11.8%, non-inferior (p=0.001), but not superior (p=0.32). EXAMINE
12. Sitagliptin vs placebo; MACE 9.6% vs 9.6%, non-inferior (p<0.001), but not superior (p=0.65). TECOS Meta-analysis (SAVOR-TIM3, EXAMINE, TECOS) MACE RR 0.99 (95% CI, 0.93-1.01, l²=0%).
13. Linagliptin vs placebo; MACE 12.4% vs 12.1% non-inferior (p<0.001), but not superior (p=0.74). CARMAELINA
14. Liraglutide vs placebo; MACE 13% vs 14.9%, superior (p=0.01, NNT=53/3.8yr), but results neutral in North America subgroup; ↓ CV death NNT=77/3.8yr and ↓ all-cause mortality NNT 72/3.8yr.
15. Canagliflozin vs placebo; MACE 13% vs 14.9%, superior (p<0.05, NNT=53/3.8yr), but results neutral in North America subgroup; ↓ CV death NNT=77/3.8yr and ↓ all-cause mortality NNT 72/3.8yr.
16. Empagliflozin vs placebo; MACE 13% vs 14.9%, non-inferior (p<0.05), but not superior (p>0.81). ELIXA
17. Exenatide extended release vs placebo (~70% CVD, ~30% primary prevention); MACE 11.4% vs 12.2% over median 3.2yr, non-inferior (p>0.001), but not superior (p=0.06). EXICAL Dulaglutide vs placebo CV trial ongoing, estimated completed 2018. REVIND Albiglutide CV trial ongoing, estimated completed 2018. HARMONY
18. Empagliflozin vs placebo; MACE 10.5% vs 12.1%, superior (p<0.04, NNT=63/3.1yr); ↓ CV death NNT=46/3.1yr and ↓ all-cause mortality NNT 39/3.1yr. EMPA-REG Canagliflozin vs placebo; MACE 26.9/1000ptys (2.7%/yr) vs 31.5/1000ptys (3.1%/yr), superior (p=0.02, NNT=220/yr), f/u duration 3.6yr, no significant difference in components of primary composite or death; ↑ MACE in 1st 30 days (n=13 vs n=1), p=NS, non-dose related; ↓ MACE (NS) after 30 days (HR 0.89, 95% CI 0.64, 1.25); numeric imbalance not present in non-CANVAS trials. DECLARE
19. Intensive insulin vs standard insulin; TIDM population; ~11yr observational follow up ↓ MACE NNT=23/17yr. DCTT, 31 EDIC
20. Insulin basal/bolus vs conventional diet; all-cause mortality 18.6% vs 19.9% p=NS, MI 15.8% vs 17.9%

Weight
A1. Metformin: ↓ 2.9 kg/4yr 1 ADAPT
A2. Sulfonlureas: ↑ 1.6 kg/4yr 1 ADAPT
A3. Pioglitazone: ↑ 3.6 kg/3yr 2 PROACTIVE
A4. Rosiglitazone: ↑ 4.8 kg/4yr; rosiglitazone statistically significant ↑ weight vs. both metformin & glyburide 1 ADAPT
A5. Acarbose: ↓ 1.15 kg/3yr 3 STOP-NIDDM
A6. Repaglinide: ↑ 1.7 kg/12-24wks;4,5 nateglinide: ↑ 0.71-16/24wks 4,6
A7. DPP4-inhibitors (generally considered neutral)
- saxagliptin ↓ 0.4 kg/2.1 year (similar to placebo) 5 SAVOR-TIM3
- alogliptin ↑ 1 kg/18 months (similar to placebo) 9 EXAMINE
- sitagliptin ↑ ≤ 0.5 kg/12 weeks 10
A8. GLP-1 agonists
- exenatide ↓ 2.8 kg/24-52 weeks 11
- liraglutide ↓ 2.3 kg/3.8 yr 12 LEADER
- dulaglutide ↓ 1.3-3 kg/5-21 weeks 13
A9. SGLT2 inhibitors 14
- canagliflozin ↓ 2.8-4 kg/4-52 weeks 15,16 CANTATA-M
- dapagliflozin ↓ 2 kg/12-52 weeks 17
- empagliflozin ↓ ~1.5-2 kg/3.1yr 18 EMPA-REG
A10. Insulin
- intensive therapy vs standard therapy; avg weight ↑ 3.5 kg vs 0.4 kg/3.5 yr; weight ↑ >10 kg 28% vs 14% p<0.001 19 ACCORD
- Note: detemir -1.27 to -0.8 kg vs NPH (glargine no difference vs NPH) 20}
Other

35. Pioglitazone & Rosiglitazone [FDA +/- Health Canada warnings/label changes:

- ↑ HF (see above) \(\text{PROACTIVE, 2 RECORD, 3 DREAM, 4, 5} \)
- ↑ fractures \(\text{PROACTIVE, 3 RECORD, 2 DREAM} \)
- ↑ NHH=38/2.9 yr \(\text{unpublished} \) \(\text{PROACTIVE, 3 RECORD} \)
- Rosiglitazone & MF \(\text{fractures} \) \(\text{NH}=24/4.9 \) yr, rosiglitazone & glyburide \(\text{fractures} \) \(\text{NH}=17/4.2 \) \(\text{ADOP} \)
- Post marketing data: pioglitazone exposure in women associated 0.8 excess fractures (distal upper and lower limbs)/100 patient-years vs comparator treated group. \(\text{No ↑ in males} \).
- ↑ diabetic macular edema: retrospective cohort, TZD users vs nonusers ↑ macular edema 1 yr follow up aOR 2.3 (1.5-3.6) & 10 yr follow up HR 2.3 (1.7-3.0). \(\text{Cross-section of ACCORD} \)
- ↑ macular edema aOR, 0.97 (0.67-1.40). \(\text{Note- only rosiglitazone has a warning} \).

36. Pioglitazone :
- ↑ bladder cancer; France, retrospective observational cohort pioglitazone exposure vs other diabetic agent HR 1.22 (1.03-1.43), pioglitazone exposure cumulative dose > 28,000 mg other diabetic agent HR 1.75 (1.22-2.5). \(\text{pioglitazone exposure >12 months vs other diabetic agent HR 1.28 (1.09-1.51)} \) \(\text{US, prospective observational cohort} \)
- pioglitazone exposure vs never exposed HR 1.2 (0.9-1.5), pioglitazone exposure >12 months vs never exposed HR 1.4 (0.9-2.1), & pioglitazone exposure >24 months vs never exposed HR 1.4 (1.03-2.0). \(\text{FDA calculated pioglitazone >12 months associated 27.5 excess cases of bladder cancer /100,000 person-yrs vs never exposed.} \)

37. Rosiglitazone [FDA +/- Health Canada warnings/label changes: restricted access- in Canada (SK-EDS) due to ↑ CV events- see MACE/mortality. \(\text{17-21} \)

38. DPP-4 inhibitors FDA +/- Health Canada warnings/label changes:

- ↑ HF risk with saxagliptin and alogliptin (see above). \(\text{10} \)
- ↑ arthralgia risk; n=33 cases of severe arthralgia, of which n=10 cases were hospitalized due to disabling joint pain; n=8 cases reported a positive rechallenge (2006-2013).

39. Incretin agents (DPP-4 inhibitors and GLP-1 agonists) ↑ pancreaticitis; \(\text{Meta-analysis of SAVOR-TIMI 53, EXAMINE, & TECOS (n=36,395) demonstrated ↑ acute pancreatitis OR 1.79 (1.13-2.82) and ARI of 0.13% vs placebo.} \)
- US case control study; incretin agent (exenatide or sitagliptin) within 30 days aOR 2.24 (95% CI, 1.36-3.68). \(\text{FDA: n=30 cases of pancreatitis with exenatide of which n=21 cases} \)

Other-continued

or sitagliptin/metformin of which n=58 cases were hospitalized (n=4 cases admitted to the ICU), n=2 cases of hemorrhagic or necrotizing pancreatitis. \(\text{27 Listed adverse event for other agents (e.g., liraglutide) in product monograph.} \)

40. Incretin agents (DPP-4 inhibitors and GLP-1 agonists) ↑ pancreatic cancer: n=13 pancreatic cancer cases suspected of being associated with all incretin-based therapies (July 31, 2014). \(\text{24, 28} \)

41. Liraglutide: ↑ thyroid C-cell tumor (including medullary thyroid carcinoma) in animal studies (both genders, dose-dependent, and treatment-duration-dependent). \(\text{29} \)

42. ↑ GI (nausea, diarrhea, vomiting) AE with long acting agents \(\text{30, 31} \)
- ↑ GI AE: taspoglutide once weekly (n=59 vs exenatide BID 35% (clinical development of taspoglutide has been stopped). \(\text{32} \)
- GI AE: Exenatide once weekly 28% vs exenatide BID 48%, albiglutide once weekly 29.8% vs liraglutide daily 52%, exenatide once weekly 19.1% vs liraglutide daily 44.5%. \(\text{33, 34, 35, 36 AWARD-6} \)

43. SGLT-2 inhibitors FDA +/- Health Canada warnings/label changes:
- ↑ diabetic ketoacidosis; n=5 Canadian cases, some requiring hospitalization (May 2016); n=7 US cases (n=44 TZDM cases, n=151DM cases, n=13 NR) (Mar 2013-2015) all requiring hospitalization or emergency department care. \(\text{37, 38} \)
- ↑ urosepsis & pyelonephritis; n=19 cases requiring hospitalizations (canagliflozin [n=10 cases] and dapagliflozin [n=9 cases]), of which n=4 cases required ICU admission and n=2 cases required hemodialysis (Mar 2013-Oct 2014). \(\text{38} \)
- ↑ AKI; n=2 Canadian cases (Canagliflozin) (Oct 2015); n=101 US cases (Mar 2013-Oct 2015), of which n=96 cases required hospitalization (n=22 cases required ICU admission), n=15 cases required hemodialysis, and n=4 cases resulted in death. ~50% of cases occurred within 1 month of drug initiation; empagliflozin not included in review due to recent approval. \(\text{39, 40} \)
- ↑ fracture; canagliflozin 100 mg-300 mg vs placebo follow up 3.6 yr; 15.4/1000ptyrs (1.54/yr) vs 11.9/1000ptyrs (1.19/yr) NNT= 285/yr (HR 1.26, 95% CI 1.04-1.52), \(\text{CANVAS} \) ↑ bMD (total hips, lumbar spine, femoral neck, & distal forearm). \(\text{41} \)
- ↑ lower limb amputation; canagliflozin 100-300 mg vs placebo follow up 3.6 yr; ↑ all amputation 6.3/1000ptyrs (6.3%yr) vs 3.4/1000ptyrs (3.4%yr) NHR=345/yr (HR 1.97, 95% CI 1.41-2.75) & ↑ major amputation (ankle, below/above knee) 1.8/1000ptyrs (0.18%/yr) vs 0.9/1000ptyrs (0.09%/yr) NHR=1000/yr (HR 2, 95% CI 1.08-3.82). \(\text{CANVAS Other trials neutral.} \)

44. ↑ UTI; SGLT2 inhibitor vs placebo: OR 1.34 (1.03-1.74, I²=0%), vs active agent: OR 1.42 (1.06-1.9, I²=25%). ↑ genital tract infection; SGLT2 inhibitor vs placebo OR 3.50 (2.46-4.99, I²=0%), vs active agent: OR 5.06 (3.44-7.75, I²=0%). \(\text{44} \)

45. Dapagliflozin: ↑ bladder/breast cancer; approved by FDA 2014 (rejected in 2012 due to breast & bladder cancer concerns). Dapagliflozin vs control; bladder cancer: n=10 cases vs n=1 case & breast cancer: n=12 cases vs n= 3 cases (up to 2013). \(\text{46} \)

46. Canagliflozin vs placebo: ↓ primary composite outcome of ESKD, doubling of Scr & renal or CV death (NNT= 23/2.6 yrs)
hospitalized, n=3 cases reported positive rechallenge.20 FDA: n=88 cases of pancreatitis with sitagliptin

Summary Safety Review - SGLT2 Inhibitors (canagliflozin, dapagliflozin, empagliflozin): Assessing the risk of the body producing high levels of acid in the blood (diabetic ketoacidosis).

DISCLAIMER: The content of this newsletter represents the research, experience and opinions of the authors and not those of the Board or Administration of Saskatoon Health Region (SHR). Neither the authors nor Saskatoon Health Region nor any other party who has been involved in the preparation or publication of this work warrants or represents that the information contained herein is accurate or complete, and they are not responsible for any errors or omissions or for the result obtained from the use of such information. Any use of the newsletter will imply acknowledgment of this disclaimer and release any responsibility of SHR, its employees, servants or agents. Readers are encouraged to confirm the information contained herein with other sources. Additional information and references online at www.RxFiles.ca

Copyright 2017 – RxFiles, Saskatoon Health Region (SHR) www.RxFiles.ca