Table 1: Recommendations for Self-Monitoring Blood Glucose in People with Type 2 Diabetes

<table>
<thead>
<tr>
<th>Type 2 Diabetes</th>
<th>Evidence Summary for SMBG</th>
<th>Bottom Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet alone or prediabetes</td>
<td>SMBG vs no SMBG: Improvements in glycemic control were less pronounced (ΔA1C=0.05%) and not statistically significant.</td>
<td>Routine SMBG is not required. May be considered for feedback to new patients on the effects of lifestyle interventions.</td>
</tr>
<tr>
<td>Not using insulin</td>
<td>> Self-testing (>7 times per week) is associated with a stat significant, but not clinically relevant, improvement (ΔA1C = 0.25%). > Benefits are small up to 6 mos (ΔA1C = 0.3%) & subside by 12 mos. > No studies have determined whether SMBG shows benefit for hard diabetes endpoints such as reduction in blindness, kidney damage, MI or mortality. > An association with depression and lower quality of life has also been noted.</td>
<td>Routine SMBG is not required. > The small reduction in A1C does not translate to better glycemic control or quality of life.</td>
</tr>
<tr>
<td>Using insulin</td>
<td>Low quality evidence suggests the use of SMBG appears to be associated with improvements in glycemic control. > There is insufficient clinical evidence to determine the optimal frequency of testing but should be individualized.</td>
<td>Basal insulin: ≤2 times per day: Individualize frequency, usually not more than 14 times per day. Basal-bolus insulin: Individualize frequency to guide adjustments in insulin therapy. (see Table 2).</td>
</tr>
</tbody>
</table>

Table 2: If self-monitoring blood glucose, when? DIabetes Canada SMBG Recommendation Tool (DCCT: SMBG Tool.pdf). SMBG Interactive Tool

Situation

<table>
<thead>
<tr>
<th>SMBG Frequency Recommendation</th>
<th>Test Strip & Lancet Coverage</th>
<th>Table 3: Consider More Frequent SMBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (typically given hs)</td>
<td>SKH = 3,650 per year (10 per day)</td>
<td>（夜间的 unawareness）hypoglycemia due to decreased counter regulatory hormones.</td>
</tr>
<tr>
<td>At least as often as insulin is being given. T2DM: daily at variable times, DCCT/Consort.</td>
<td>NIH: > 100 per 5 days (8 per day)</td>
<td>nocturnal hypoglycemia (night sweats, nightmares): intensive insulin regimens; monitor overnight BG levels at peak action time of overnight insulin</td>
</tr>
<tr>
<td>Premixed (typically ac; breakfast & supper)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least as often as insulin is being given.</td>
<td></td>
<td>more for info on assessment and management of hypoglycemia, see page 28</td>
</tr>
<tr>
<td>QID; pre meals and at bedtime, to assess previous dose and to adjust the next dose (post-prandial or paired meal checking can also be helpful, see page 27)</td>
<td></td>
<td>medication changes, major changes in diet/activity (e.g., > 5 SMBG for 1-2 weeks)</td>
</tr>
<tr>
<td>Intensive regimens: may require 6-10 tests/day (ac. pc. hs. night)</td>
<td></td>
<td>acute illness or hospitalization (e.g. risk of hyperglycemia with infection)</td>
</tr>
</tbody>
</table>

Table 3: Consider More Frequent SMBG

<table>
<thead>
<tr>
<th>Situation</th>
<th>SMBG Frequency Recommendation</th>
<th>Test Strip & Lancet Coverage</th>
<th>Table 3: Consider More Frequent SMBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (typically given hs)</td>
<td>SKH = 3,650 per year (10 per day)</td>
<td>（夜间的 unawareness）hypoglycemia due to decreased counter regulatory hormones.</td>
<td></td>
</tr>
<tr>
<td>At least as often as insulin is being given. T2DM: daily at variable times, DCCT/Consort.</td>
<td>NIH: > 100 per 5 days (8 per day)</td>
<td>nocturnal hypoglycemia (night sweats, nightmares): intensive insulin regimens; monitor overnight BG levels at peak action time of overnight insulin</td>
<td></td>
</tr>
<tr>
<td>Premixed (typically ac; breakfast & supper)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least as often as insulin is being given.</td>
<td></td>
<td>more for info on assessment and management of hypoglycemia, see page 28</td>
<td></td>
</tr>
<tr>
<td>QID; pre meals and at bedtime, to assess previous dose and to adjust the next dose (post-prandial or paired meal checking can also be helpful, see page 27)</td>
<td></td>
<td>medication changes, major changes in diet/activity (e.g., > 5 SMBG for 1-2 weeks)</td>
<td></td>
</tr>
<tr>
<td>Intensive regimens: may require 6-10 tests/day (ac. pc. hs. night)</td>
<td></td>
<td>acute illness or hospitalization (e.g. risk of hyperglycemia with infection)</td>
<td></td>
</tr>
</tbody>
</table>

To ensure accuracy of meters: Results should be compared with lab measurements of simultaneous venous fasting plasma glucose (8-hour fast) at least annually and when A1C does not match glucose meter readings.

Cost of meter: FREE with purchase of test strips (test strips and lancets covered by SKH provincial drug plan, NIH drug plan and many 3rd party plans), CGM devices not covered by SKH & NIH; Annual cost of test strips: $200-365 (1 test/day) to $1,300-2,500 (7 tests/day); Choice: consider patient factors and preferences (e.g. vision impairment, dexterity, alternate site testing if finger poke pain, smartphone compatibility, need for continuous glucose monitoring)
ONLINE EXTRAS: SELF-MONITORING OF BLOOD GLUCOSE IN TYPE 2 DIABETES

Background considerations:

- Weighing the benefits & risks of intensive therapy: [See also Diabetes - Landmark Outcome Trials Chart]
 - The results of clinical trials evaluating outcomes of intensive glycemic control have been somewhat disappointing. Achieving an A1C of less than 6.5% may reduce microvascular endpoints, but over 100,000 patient years of RCT data have failed to show a benefit on CV endpoints.\(^{11}\) (The 10 year observational follow-up to the UKPDS suggests CV benefit of intensive glycemic control (FBG <6; mean baseline A1C 7% vs 8.5%) especially with metformin.\(^{13}\))
 - Individualization of antihyperglycemic therapy has become a common theme; as some evidence & experience suggests that some patients may do worse with more intensive regimens (e.g. \(^{11}\) in Type 2 patients randomized to achieve an intensive A1C of 6% vs 7-8%; actual A1C achieved was 6.4% vs 7.5%).\(^{10}\)
 - Although an A1C of <7% is suggested for most, individual patient & treatment regimen factors may result in acceptance of less aggressive targets. For example the American Geriatric Society\(^{10}\) noted that an A1C of 8% may be more suitable in frail elderly & those with a life expectancy <5yrs.
 - A recent observational cohort trial found a "U" shaped curve for mortality related to A1C. An A1C of 7.5% was associated with the lowest mortality, with higher mortality seen at higher and lower A1C values.\(^{11}\)

If practice changes to reflect the evidence, $450 million to $1.2 billion* could be freed up between 2012 and 2015 for spending on antidiabetes interventions that are proven effective.

*No Drugs - may include claims from beneficiaries that received non-benefit insulin or oral hypoglycemic agents.

Patient health would not be affected negatively.

[These results were prepared using data from Bregman Inc., a unit of IMS, Phamarat8, Public and Private Drug Plans Databases, 2008-2010]

Acknowledgements:

Contributors & Reviewers: Ann Colbourne, MD, FRCP, FACP (Department of Medicine, U of A, Edmonton), Tessa Laubscher (CCFP, College of Medicine, U of S, Saskatoon), M Jn Laubscher (Hamilton), Henry Halatyi (PharmD, CDE, SMB, Toronto), Artene Kuntz (Pharmacist, DES, CDA, Regina); Derek Jorgenson (PharmD), College of Medicine, U of S, Saskatoon, Karen McDemarr (Pharmacist, CDE, RCHQ, SK), Kristen Chelak (Pharmacist), MSc, RPh (COMPUS, Ottawa) & the RxFiles Advisory Committee. Prepared by L. Regier (PharmD, FAPhA) & B. Jentsch (COMPUS) for assistance the University of Alberta.

Disclaimer:

The content of this newsletter represents the research, experience and opinions of the authors and not those of the Board of Directors or Administrators of the Saskatoon Health Region (SHR). Neither the authors nor Saskatoon Health Region nor any other party who has been involved in the preparation or publication of this newsletter will in any way be held responsible for any acts or omissions arising from the information contained herein. Further any use of this newsletter will imply acknowledgement of this disclaimer and release any responsibility of SHR, its employees, agents or agents. Readers are encouraged to verify the information contained herein with other sources. Additional information and references online at www.RxFiles.ca

Copyright 2019 © www.RxFiles.ca

Patients with diabetes who are using insulin

$183,000,000

Patients with diabetes who are not using insulin

$317,000,000

Thanks to CADTH-COMPUS for assistance the development of this document.

See online for Copyright and Disclaimer information.

Copyright 2019 © www.RxFiles.ca

Data provided from Saskatchewan Health; used by permission.
And these new restrictions are okay with the Canadian Diabetes Association, which worked with the government to ensure that...

Majumdar SR. Self-monitoring of blood glucose was not cost-effective in non-insulin-treated type 2 diabetes. ACP J Club. 2008 Nov-Dec;149(4):4-5.

Malanda UL, Welschen LM, Ripplinger II, et al. Self-monitoring of blood glucose in patients with type 2 diabetes who are not using insulin. Cochrane Database Syst Rev. 2012 Jan 18;1:CD005060. [From this review, we conclude that when diabetes duration is over one year, the overall effect of self-monitoring of blood glucose on glycemic control in patients with type 2 diabetes who are not using insulin is small up to six months after initiation and subsides after 12 months. Furthermore, based on a best-evidence synthesis, there is no evidence that SMBG affects patient satisfaction, general well-being or general health-related quality of life. More research is needed to explore the psychological impact of SMBG and its impact on diabetes specific quality of life and well-being, as well as the impact of SMBG on hypoglycaemia and diabetic complications.]

References:

