PLATO: Ticagrelor **BRILINTA** vs Clopidogrel **PLAVIX** in Acute Coronary Syndrome

PLAtelet inhibition and patient Outcomes trial

BOTTOM LINE

- Patients with a high risk of thrombosis & low risk of bleeding may benefit from ticagrelor. Caution in those with a history of COPD, asthma, HFrEF, gout & severe renal impairment due to increased risk of dyspnea & elevated serum uric acid & creatinine.
- In **PLATO**, ACS patients ≥50% NSTEACS who received ticagrelor + ASA, versus clopidogrel + ASA, for a median of **9 months** had:
 - ↓ risk composite of death from vascular causes, MI, stroke (NNT=53)
 - ↓ risk of non-CABG related major bleeding (NNH=167) & intracranial fatal bleeding
 - ↑ risk of dyspnea (NNH=17), and premature discontinuation of therapy (NNT=53).
- Based on the **PLATO** results, the **2012 Canadian Cardiovascular Society Antithrombotic Guidelines** recommend the following: 2
 - Ticagrelor + ASA 81mg daily is preferred over clopidogrel + ASA 81mg daily x 12 months for:
 - STEMI with primary PCI
 - NSTEACS (medical management or revascularization)
 - At time of publication, ticagrelor **$108/month vs clopidogrel $26/month**.

BACKGROUND

- Dual antiplatelet therapy (DAPT, i.e. ASA + clopidogrel/prasugrel/ticagrelor) is recommended after ACS (STEMI or NSTEACS) to reduce the risk of thrombosis.
- Prior to **PLATO**, clopidogrel **PLAVIX** & prasugrel **EFFIENT** demonstrated a reduction in a composite endpoint of CV mortality, MI or stroke (always driven by a reduction in MI) with an associated risk in major bleeding.
 - Clopidogrel, however, has inter-individual genetic variability that may result in poor antiplatelet response in some patients, irreversible antiplatelet effect, and a slower onset.
 - Prasugrel reduced CV mortality, MI or stroke more than clopidogrel, but it also increased the risk of major bleeding (including life-threatening and fatal bleeds). Prasugrel also resulted in net harm in those with a history of stroke/TIA and no net benefit was found in those ≥75yrs and ≤60kg.
- Compared to clopidogrel and prasugrel, ticagrelor is not a pro-drug and is a reversible P2Y12 inhibitor, resulting in more favourable pharmacokinetic effects such as rapid onset, offset, and lower inter-individual response.

TRIAL BACKGROUND

- **DESIGN**: randomized, double-blind, double dummy, international 43 countries, multicentre 862 sites, Controlled trial. ITT & superiority for efficacy outcomes. Enrolment: October 2006 to July 2008. Funded by AstraZeneca (ticagrelor).
- **INTERVENTION**: ticagrelor 180 mg LD followed by 90 mg BID vs clopidogrel 300-600mg LD followed by 75 mg daily, + ASA x 12 months (median 9 months). After coronary stenting, protocol allowed for ASA 325 mg for ≤6 months.
- **INCLUSION**: ≥18yrs, hospitalized for ACS with onset during previous 24 hours
 - NSTEACS: ≥2 had to be met: a) ST segment changes indicating ischemia, b) positive biomarker, c) ≥1 risk factor: ≥60yrs, prior MI or CABG, CAD ≥50% stenosis in ≥2 vessels, prior ischemic stroke/TIA, carotid stenosis, cerebral revascularization, DM, PAD, CKD
 - STEMI: both ST-segment elevation ≥0.1mV & planned primary PCI
- **EXCLUSION**: Pregnant, CI to clopidogrel, use of fibrinolytic therapy <24 hrs before randomization, need for OAC, ↑ risk of bradycardia, strong CYP3A inhibitor/inducer, dialysis, clonidine, important thrombocytopenia or anemia
- **POPULATION at baseline**: n=18,624, NSTEACS (~60% NSTEACS 42.7%, UA 16.7%, n=11,067) & STEMI (37.7%, n=7026)
 - Mean age 62yrs, ~15% ≥75yrs, 28% female, ~92% Caucasian, ~2% from Canada; median body weight 80 kg, BMI 27 kg/m²
 - ~65% HTN, ~46% dyslipidemia, ~36% smoker, ~25% DM, ~15% dyspnea, ~6% COPD, 5.5% HF, ~4% CKD, ~3% asthma, ~3% gout
 - ~20% prior MI, ~13% prior PCI, ~6% prior CABG
 - ~89% statin, ~89% beta blocker, ~75% ACEI, 18% ARB, ~12% ARB, ~45% on PPI
 - During the trial, 64% PCI (42% BMS, 18% DES), 10% CABG
 - Clopidogrel LD: 60% received 300mg, 20% received 600mg
 - 46% of ticagrelor arm also received open-label clopidogrel LD prior to randomization (in addition to ticagrelor LD).
 - ASA dose: overall, 97.5% 75-100 mg daily. 9.7% from North America; ~50% of the US sites: median ASA dose of 75-100 mg daily.

RESULTS

TABLE 1: EFFICACY (ITT ANALYSIS)

<table>
<thead>
<tr>
<th>Clinical Endpoints</th>
<th>Ticagrelor 90 mg BID (n=9333)</th>
<th>Clopidogrel 75 mg daily (n=9291)</th>
<th>HR (95% CI)</th>
<th>ARR</th>
<th>NNT / 9 MONTHS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY EFFICACY ENDPOINT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from vascular causes, MI or stroke</td>
<td>9.8%</td>
<td>11.7%</td>
<td>0.84 (0.77-0.92)</td>
<td>1.9%</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>SECONDARY EFFICACY ENDPOINTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from vascular causes</td>
<td>4%</td>
<td>5.1%</td>
<td>0.79 (0.69-0.91)</td>
<td>1.1%</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>5.8%</td>
<td>6.9%</td>
<td>0.84 (0.75-0.95)</td>
<td>1.1%</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>1.5%</td>
<td>1.3%</td>
<td>1.17 (0.91-1.52)</td>
<td>NS</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Death from any cause</td>
<td>4.5%</td>
<td>5.9%</td>
<td>0.78 (0.69-0.89)</td>
<td>1.4%</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Death from any cause, MI, or stroke</td>
<td>10.2%</td>
<td>12.3%</td>
<td>0.84 (0.77-0.92)</td>
<td>2.1%</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Death from vascular causes, MI, stroke in subgroup with planned invasive tx</td>
<td>8.9%</td>
<td>10.6%</td>
<td>0.84 (0.75-0.94)</td>
<td>1.7%</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Death from vascular causes, MI, stroke, severe recurrent ischemia, recurrent ischemia, TIA or arterial thrombotic</td>
<td>14.6%</td>
<td>16.7%</td>
<td>0.88 (0.81-0.95)</td>
<td>2.1%</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Stent thrombosis (definite)</td>
<td>1.3%</td>
<td>1.9%</td>
<td>0.67 (0.5-0.91)</td>
<td>0.6%</td>
<td>167</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2: ADVERSE EVENTS AND LAB ABNORMALITIES

<table>
<thead>
<tr>
<th>OUTCOME OR ENDPOINT</th>
<th>TICAGRELOR 90 MG BID n=9235</th>
<th>CLOPIDOGREL 75 MG DAILY n=9186</th>
<th>HR (95% CI)</th>
<th>ARI OR ARR</th>
<th>NNH OR NNT / 9 MONTHS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal non-intracranial bleeding</td>
<td>0.1%</td>
<td>0.3%</td>
<td>RR 0.33</td>
<td>0.2%</td>
<td>500</td>
<td>• NS differences in the following:</td>
</tr>
<tr>
<td>Fatal intracranial bleeding</td>
<td>0.1%</td>
<td>0.01%</td>
<td>RR 10</td>
<td>0.09%</td>
<td>1112</td>
<td>- major bleeding (trial or TIMI criteria)</td>
</tr>
<tr>
<td>Non-CABG major bleeding (trial criteria)</td>
<td>4.5%</td>
<td>3.8%</td>
<td>1.19 (1.02-1.38)</td>
<td>0.7%</td>
<td>143</td>
<td>- bleeding requiring transfusion</td>
</tr>
<tr>
<td>Non-CABG major bleeding (TIMI criteria)</td>
<td>2.8%</td>
<td>2.2%</td>
<td>1.25 (1.03-1.53)</td>
<td>0.6%</td>
<td>167</td>
<td>- life-threatening or fatal bleeding (study criteria)</td>
</tr>
<tr>
<td>Major or minor bleeding (trial criteria)</td>
<td>16.1%</td>
<td>14.6%</td>
<td>1.11 (1.03-1.2)</td>
<td>1.5%</td>
<td>77</td>
<td>- intracranial bleeding</td>
</tr>
<tr>
<td>Any dyspnea</td>
<td>13.8%</td>
<td>7.8%</td>
<td>1.84 (1.68-2.02)</td>
<td>6%</td>
<td>17</td>
<td>- major or minor bleeding (TIMI criteria)</td>
</tr>
<tr>
<td>Dyspnea requiring discontinuation</td>
<td>0.9%</td>
<td>0.1%</td>
<td>6.12 (3.41-11.01)</td>
<td>0.8%</td>
<td>125</td>
<td>- CABG related (procedural)</td>
</tr>
<tr>
<td>Ventricular Paus 3 sec in first week</td>
<td>5.8%</td>
<td>3.6%</td>
<td>RR 1.61</td>
<td>2.2%</td>
<td>46</td>
<td>- bradycardia</td>
</tr>
<tr>
<td>Premature discontinuation</td>
<td>23.4%</td>
<td>21.5%</td>
<td>RR 1.10</td>
<td>1.9%</td>
<td>53</td>
<td>- ventricular pauses ≥3 sec at 30 days</td>
</tr>
<tr>
<td>Premature discontinuation due to AE</td>
<td>7.4%</td>
<td>6%</td>
<td>RR 1.23</td>
<td>1.4%</td>
<td>72</td>
<td>• Clinical significance of elevated Scr & uric acid cannot be determined as study only reported % ↑ without indicating what the baseline mean was.</td>
</tr>
<tr>
<td>Premature discontinuation due to unwillingness to continue</td>
<td>10.1%</td>
<td>9.2%</td>
<td>RR 1.03</td>
<td>0.9%</td>
<td>112</td>
<td>- 1 month after end of tx, % ↑ for Scr & uric acid was NS.</td>
</tr>
</tbody>
</table>

† serum uric acid: baseline to 1 month | 14% +/- 46% | 7% +/- 44% | - | - | - | - |
† serum uric acid: baseline to 12 months | 15% +/- 52% | 7% +/- 31% | - | - | - | - |
↑ in Scr: baseline to 1 month | 10% +/- 22% | 8% +/- 21% | - | - | - | - |
↑ in Scr: baseline to 12 months | 11% +/- 22% | 9% +/- 22% | - | - | - | - |

STRENGTHS, LIMITATIONS, & UNCERTAINTIES

STRENGTHS:
• Clinically meaningful endpoints (death from vascular causes, MI, stroke).
• ITT analysis of efficacy outcomes
• Only 5 patients lost to follow (0.03%)

LIMITATIONS:
• Only 2.2% (n=401) of patients were from Canada.1,3
• The independent data & safety monitoring board had access to unblinded data.
• 46% of patients randomized to ticagrelor received both clopidogrel and ticagrelor loading dose.
• Variability existed in clopidogrel loading dose (300 to 600 mg).
• >20% discontinued treatment prematurely
• Potential lack of ticagrelor efficacy in North Americans (n=1814, US n=1413, Canada n=401), lower weight patients, and those not taking lipid lowering therapies at randomization. Subgroup analysis of geographic location showed significantly higher proportion of Americans received median ASA dose ≥300 mg vs rest of world (53.6% vs 1.7%). As such, ASA <100 mg/day is the recommended dose when combined with ticagrelor.3
• Of the 64% who underwent PCI, only 18% received DES. DES have largely replaced BMS in current practice.

UNCERTAINTIES:
• Safety of ticagrelor in patients with pulmonary diseases (dyspnea), bradycardia/heart block (ventricular pauses), renal dysfunction (elevation in Scr), & gout (elevation in uric acid). There was a low percentage of patients with a history of COPD, asthma, CHF, gout, & CKD included in the study.
• Unclear if allocation was concealed.

RxFILES RELATED LINKS
• Duration of DAPT & Triple Therapy RxFiles Chart
• DAPT RxFiles Trial Summary: http://www.rxfiles.ca/rxfiles/uploads/documents/DAPT-Trial-12vs30months.pdf

© not covered by NIHBB = Exceptional Drug Status in SK ACCE = angiotensin converting enzyme inhibitor ACS = acute coronary syndrome AE = adverse event ARB = angiotensin II receptor blocker AR = absolute risk increase ARRI = absolute risk reduction ASA = acetylsalicylic acid BID = twice daily BMI = body mass index BMS = bare metal stent CABG = coronary artery bypass grafting CAD = coronary artery disease CI = confidence interval/conditionalized CIK = coronary artery disease COPD = chronic obstructive pulmonary disease CV = cardiovascular CYP3A4 = cytochrome P450 3A4 DAPT = dual antiplatelet therapy DES = drug-eluting stent DM = diabetes mellitus HF = heart failure HR = hazard ratio INR = hour HTN = hypertension ITT = intention to treat LD = loading dose MII = myocardial infarction NNT = number needed to treat NSTEACS = non ST-elevated ACS NSTE = non ST-elevated MI OAC = oral anticoagulant PAD = peripheral artery disease PCI = percutaneous coronary intervention pBH = statistically significant for interaction PPI = proton pump inhibitor RR = relative risk Scr = serum creatinine sec = seconds STEMI = ST-elevated myocardial infarction TIMI = transient ischemic attack TIMI = thrombolysis in MI tx = treatment UA = unstable angina US = United States yr = year

Acknowledgements: Prepared By: Danielle Shmyr, Lynette Kosar, Brent Jensen, Loren Regier

Disclaimer: The content of this newsletter represents the research, experience and opinions of the authors and not those of the Board or Administration of Saskatoon Health Region (SHR). Neither the authors nor Saskatchewan Health Region nor any other party who has been involved in the preparation or publication of this work warrants or represents that the information contained herein is accurate or complete, and they are not responsible for any errors or omissions or for the result obtained from the use of such information. Any use of the newsletter will imply acknowledgement of this disclaimer and release any responsibility of SHR, its employees, servants or agents. Readers are encouraged to confirm the information contained herein with other sources. Additional information and references online at www.RxFiles.ca. Copyright 2016 – RxFiles, Saskatchewan Health Region (SHR).

References:

