Drug Class	Metformin (MF)	Gliclazide (Diamicron, Glycin)	Glyburide (Diabeta)	Pioglitazone (Actos)	Rosiglitazone (Avandia)	Acarbose (Glucofage)	Repaglinide (Gliptin)	Nateglinide (Starlix)	Sulfonylureas	
TZDs										
Meglitinides										
Insulin in T2DM										
Intensity: Less										
Insulin in T2DM										
Intensity: More										

Major trials to support findings: Outcomes

- **UKPDS-33, 34, 80** (ADOPT; some use in ADVANCE)
- **ADVANCE**
- **UKPDS-33, 80** (ADOPT)
- **ProACTIVE**
- **Meta-analysis. RECORD interim, ADOPT, DREAM** (prevention trial: Stop-NIDDM)
- **SAVOR-TIMI-33**
- **TEOS, EXAMINE, CARMELONA** (2018)
- **PAUROGUE** (2016)
- **ELDA LEADER SUSTAINING EXCEL** (2018)
- **REWIND** (2018)
- **T2DM UKPDS-33, 80, ADVANCE, ACCORD, VADT, ORIGIN**
- **Placebo group had > insulin use in LEADER**
- **T2DM: DCC/TEDC/ADOPT (Mali-khan et al., 2011:343-46679)**

Outcomes

- **L-BSP, L-1 Agonists (Subcut)**
- **DPP-4 Inhibitors**
- **GLP-1 Agonists (Subcut)**
- **SGLT-2 Inhibitors**

Effect on A1C

- **Weight loss vs neutral vs gain**
- **Risk of Hypoglycemia**
- **Risk of HF / Edema**
- **Effect on GI tolerability**
- **Cost**
- **Other**

Overall

- **An Advantage**
- **Neutral**
- **X**
- **A Disadvantage**
- **Unknown/Ongoing**

Intensities

- **Less (NPH HS + MF)**
- **More (Multiple daily doses)**

Individualized approach considering balance of potential benefits & harms. Over-aggressive pursuit of targets can risk mortality.

Footnotes

- Drugs that lower blood glucose come with various levels of evidence regarding their balance of benefits & harms. This chart relies on current evidence, especially from randomized controlled trials that have evaluated patient-oriented outcomes. Direct comparisons between agents have not been done so one is left to evaluate each drug for its relative advantages & disadvantages. **A1C will vary depending on dose, combinations & initial A1C.**

See full version of this ANTI-HYPERGLYCEMIC DIABETES AGENTS: Outcomes Comparison Summary Table online for additional notes: http://www.rxfiles.ca/rxfiles/upload/documents/Diabetes_Agents-Outcomes_Comparison-Summary-Table.pdf

Copyright 2017 – RxFiles, Saskatoon Health Region (SHR) www.RxFiles.ca Disclaimer: http://www.rxfiles.ca/rxfiles/modules/miscellaneous/copyright.aspx
Death/MACE (MACE: Major adverse cardiovascular event)

1. Drug manufacturers must establish CV safety (one-sided upper boundary of 95% CI \(\leq 1.3\)) vs comparator (typically placebo) in a RCT for all new agents in \(\uparrow\text{CV risk patients}\).

2. Metformin vs conventional diet; obese \(\geq 1200\) kcal & small sample \(n=753\), \(\downarrow\text{all-cause mortality NNT}14/10.7\) yr, and \(\downarrow\text{MI NNT=14/10.7}\) yr.

3. Intensive HbA1c target (including gliclazide) vs standard HbA1c target; MACE 10% vs 10.6% \(\uparrow\text{p=NS, all-cause mortality 8.9% vs 9.6% \(\uparrow\text{p=NS}\).}

4. Intensive therapy (chlorpropamide, glibenclamide \(\uparrow\text{or insulin}\) vs conventional diet; all-cause mortality 17.9% vs 18.9% \(\uparrow\text{p=NS, MI 14.7% vs 17.4% \(\uparrow\text{p=NS, and stroke 5.6% vs 5% \(\uparrow\text{p=NS}\).}

5. SU (2\text{nd} \text{or 3rd generation}) vs control (diet, placebo, other antihyperglycemic); all-cause mortality OR 1.12 (0.96-1.3, \(i^{2}=0.00\)), CV mortality OR 1.12 (0.87-1.42, \(i^{2}=12\)), MI OR 0.92 (0.76-1.12, \(i^{2}=\text{N/NR}\), stroke OR 1.16 (0.81-1.66, \(i^{2}=\text{N/NR}\)).

6. Metformin vs glipizide; Chinese, small sample \(n=304\), & medically untreated 100% CAD, but \(\leq10\%\) taking ACE; Metformin \(\downarrow\text{MACE NNT=10/5.3}\).

7. Pioglitazone vs placebo; T2DM & high CV risk; \(\downarrow\text{MACE NNT=50/2.9}\).

8. Rosiglitazone vs placebo; \(\uparrow\text{MACE 2.9% vs 2.1% p=0.08 (NS), trial stopped 5 mos early.}\)

9. SU (2\text{nd} or 3rd generation) vs control (diet, placebo, other antihyperglycemic); all-cause mortality OR 1.12 (0.96-1.3, \(i^{2}=0.00\)), CV mortality OR 1.12 (0.87-1.42, \(i^{2}=12\)), MI OR 0.92 (0.76-1.12, \(i^{2}=\text{N/NR}\), stroke OR 1.16 (0.81-1.66, \(i^{2}=\text{N/NR}\)).

10. Liraglutide vs placebo; MACE 13% vs 14.9%, \(\uparrow\text{p=0.01, NNT=53/3.8}\), but results neutral in North America subgroup; \(\downarrow\text{CV death NNT=77/3.8}\) yr and \(\downarrow\text{all-cause mortality NNT=72/3.8}\) yr.

11. Sitagliptin vs placebo; MACE 13.4% vs 13.2%, \(\downarrow\text{p=0.001, but not superior } (p=0.81)\).

Death/MACE (MACE: Major adverse cardiovascular event)- cont’d

21. Greater insulin use (any & bolus) with intensive therapy vs standard therapy; \(\uparrow\text{MACE NNT=33/3.5}\) yr and \(\uparrow\text{CV death NNT=125/3.5}\) yr.

Weight (weight gain/loss variable, diabetics agents used in conjunction with diet and lifestyle interventions as well as other concomitant medications)

A. Metformin: \(\downarrow\text{2.9 kg/yr } 1^\text{st}\) \(\text{ADOPT}\)

B. Sulfonylureas: \(\uparrow\text{1.6 kg/yr } 1^\text{st}\) \(\text{ADOPT}\)

C. Pioglitazone: \(\uparrow\text{3.6 kg/3 yr } 1^\text{st}\) \(\text{ADOPT}\)

D. Rosiglitazone: \(\uparrow\text{4.8 kg/4 yr } 1^\text{st}\) \(\text{ADOPT}\)

E. Alogliptin: \(\uparrow\text{1 kg/18 months } (\text{similar to placebo }) 1^\text{st}\) \(\text{ADOPT}\)

F. Sitagliptin: \(\uparrow\text{0.5 kg/12 weeks} 1^\text{st}\) \(\text{ADOPT}\)

G. GLP-1 agonists:

- exenatide \(\downarrow\text{2.8 kg/24-52 weeks} 1^\text{st}\) \(\text{ADOPT}\)
- liraglutide \(\downarrow\text{2.3 kg/3.8 yr } 1^\text{st}\) \(\text{ADOPT}\)
- dulaglutide \(\downarrow\text{1.3-3 kg/5-52 weeks} 1^\text{st}\) \(\text{ADOPT}\)

H. SGLT2 inhibitors:

- canagliflozin \(\downarrow\text{2.6 kg/4-52 weeks} 1^\text{st}\) \(\text{ADOPT}\)
- dapagliflozin \(\downarrow\text{2 kg/12-52 weeks} 1^\text{st}\) \(\text{ADOPT}\)

I. Empaglifoxin \(\downarrow\text{1.5-2 kg/3.1 yr } 1^\text{st}\) \(\text{ADOPT}\)

J. Azagluride: \(\downarrow\text{CV death NNT=22/1.3} 1^\text{st}\) \(\text{ADOPT}\)

K. Sitagliptin: \(\downarrow\text{CV death NNT=5/2.9} 1^\text{st}\) \(\text{ADOPT}\)

L. Ertugliflozin: \(\downarrow\text{CV death NNT=5/2.9} 1^\text{st}\) \(\text{ADOPT}\)

M. Albiglutide: \(\downarrow\text{CV death NNT=5/2.9} 1^\text{st}\) \(\text{ADOPT}\)

H/Edema

22. MF should be considered 1st line in HF patients with eGFR > 30 ml/min [Grade D, Consensus].

23. Retrospective cohort (n=10,920 patients hospitalized with HF); MF vs SU \(\downarrow\text{all-cause mortality aHR 0.85 (95% CI 0.75-0.98)}\), MF + SU vs MF \(\downarrow\text{all-cause mortality aHR 0.89 (95% CI 0.82-0.96)}\), MF + insulin vs neutral aHR 0.96 (95% CI 0.82-1.13), MF+SU insulin neutral aHR 0.94 (0.77-1.15).

24. Intensive A1C target (including gliclazide) vs standard A1C target; HF (HF death, HF hospitalization, worsening NYHA class) 3.9% vs 4.1% p=NS.

25. Glyburide vs rosiglitazone; \(\downarrow\text{HF (total events) NNT=67/3.5}\) yr.

26. Pioglitazone vs placebo; \(\uparrow\text{hospitalization for HF NHH=50/2.9}\) yr (not adjudicated), \(\uparrow\text{edema (without HF) NHH=8/2.9}\) yr.

27. Rosiglitazone + metformin or SU; \(\uparrow\text{hospitalization for HF or HF death NHH=69/5.5}\) yr.

28. Acarbose vs placebo; \(\uparrow\text{impaired glucose tolerance; HF 0% vs 0.3% p=N/A} 1^\text{st}\) \(\text{ADOPT}\)

29. Repaglinide vs rosiglitazone: peripheral edema 0% vs 3.2%, p=N/A.

30. Saxagliptin vs placebo; \(\uparrow\text{hospitalization for HF NHH=143/2.1}\) yr; however, subgroup without a history of HF at baseline \(\uparrow\text{hospitalization for HF NHH=147/2.1}\) yr, subgroup eGFR < 60 ml/min \(\uparrow\text{hospitalization for HF NHH=68/2.1}\) yr & no difference from 12 months on HR 1.05, 95% CI 0.81-1.35.

31. Sitagliptin vs placebo; hospitalization for HF 3.9% vs 3.3% p=0.22; subgroup without a history of HF at baseline.\(\uparrow\text{hospitalization for HF NHH=111/1.5}\) yr.
39. FDA warnings for both saxagliptin & alogliptin.17
31. Basal insulin (glargine) vs placebo; hospitalization for HF: 4.7% vs 5.3% p=0.14.18 LEADER Lixisenatide vs placebo; hospitalization for HF: 4.0% vs 4.2% p=0.75.19 ELIKA
32. Canagliflozin vs placebo; hospitalization for HF: 2.7% vs 4.1% p=0.002.20 EMPA-REG
33. Basal insulin (glargine) vs placebo; hospitalization for HF: 4.9% vs 5.5% p=N.S.21 ORIGIN
34. Basal insulin vs basal/bolus insulin; small sample n=152; HF 1.3% vs 5.3% p=N.S.22 ArthritisRheum1997

Other

35. Pioglitazone & Rosiglitazone FDA +/- Health Canada warnings/label changes:

- HF (see above)1 PROACTIVE, 2 RECORD, 3 DREAM, 4, 5
- fractures; pioglitazone vs placebo 5.1 vs 2.5%, calculated p=0.005 fractures; NNH=38.2/yr (unpublished data).6 Rosiglitazone vs MF ADAPT fractures; NNH=24/4 yr, rosiglitazone vs glyburide & fractures; NNH=17/4 yr.7 Post marketing data:

- pioglitazone exposure in women associated 0.8 excess fractures (distal upper and lower limbs)/100 patient-years vs comparator treated group. No ↑ risk in males.8,9
- diabetic macular edema: retrospective cohort, TZD users vs nonusers ↑ macular edema 1 yr follow up aOR 2.0 (1.5-3.6) & 10 yr follow up HR 2.3 (1.7-3.0).10 Cross-section of ACCORD ↑ macular edema aOR 0.97 (0.67-1.40).11 Note- only rosiglitazone has a warning.12

36. Pioglitazone & Rosiglitazone FDA +/- Health Canada warnings/label changes: restricted access- in Canada (SK-EDS) due to ↑ CV events- see MACE/mortality.10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

37. Rosiglitazone FDA +/- Health Canada warnings/label changes: restricted access- in Canada (SK-EDS) due to ↑ HF risk with saxagliptin and alogliptin (see above).10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

38. DPP-4 inhibitors FDA +/- Health Canada warnings/label changes:

- ↑ HF risk with saxagliptin and alogliptin (see above).10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

39. Incretin agents (DPP-4 inhibitors and GLP-1 agonists) ↑ pancreatic ↑ acute pancreatitis OR 1.79 (1.13-2.82) and ARI of 0.13% vs placebo.24, 25 US case control study; incretin agent (exenatide or sitagliptin) within 30 days aOR 2.24 (95% CI, 1.36-3.68).25 FDA: n=30 cases of pancreatitis with exenatide of which n=21 cases hospitalized, n=3 cases reported positive rechallenge.26 FDA: n=88 cases of pancreatitis with sitagliptin or sitagliptin/metformin of which n=58 cases were hospitalized (n=4 cases admitted to the ICU), n=2 cases of hemorrhagic or necrotizing pancreatitis.27

40. Incretin agents (DPP-4 inhibitors and GLP-1 agonists) ↑ pancreatic cancer: n=13 pancreatic cancer cases suspected of being associated with all incretin-based therapies (July 31, 2014).24, 25

41. Liraglutide: ↑ thyroid C-cell tumor (including medullary thyroid carcinoma) in animal studies (both genders, dose-dependent, and treatment-duration-dependent)29

42. GI (nausea, diarrhea, vomiting) AE with long acting agents: GI AE: tasgoplitazone once weekly 59% vs exenatide BID 35% (clinical development of tasgoplitazone has been stopped).31 GI AE: Exenatide once weekly 28% vs exenatide BID 48%, albglutide once weekly 29.8% vs liraglutide daily 52%, exenatide once weekly 19.1% vs liraglutide daily 44.5%.33 DURATION-6, 34 HARMONY-7, 35 DURATION-6

Other- continued

Neutral GI: dulaglutide once weekly 39.4% vs liraglutide daily 38.3%.36 AWARD-6

43. SGLT-2 inhibitors FDA +/- Health Canada warnings/label changes:

- ↑ diabetic ketoacidosis; n=5 Canadian cases, some requiring hospitalization (May 2016); n=73 US cases (n=44 T2DM cases, n=15T1DM cases, n=13 NR) (Mar 2013-2015) all requiring hospitalization or emergency department care.37, 38

- ↑ urosepsis & pyelonephritis; n=19 cases requiring hospitalizations (canagliflozin [n=10 cases] and dapagliflozin [n=9 cases]), of which n=4 cases required ICU admission and n=2 cases required hemodialysis (Mar 2013-Oct 2014).38

- ↑ AKI; n=2 Canadian cases (Canagliflozin) (Oct 2015); n=101 US cases (Mar 2013-Oct 2015), of which n=96 cases required hospitalization (n=22 cases required ICU admission), n=15 cases required hemodialysis, and n=4 cases resulted in death. “50% of cases occurred within 1 month of drug initiation; empagliflozin not included in review due to recent approval”.39, 40

- ↑ fracture; canagliflozin 100 mg-300 mg vs placebo follow up 3.6yr; 15.4/1000ptyrs (Canagliflozin) vs 7.1/1000ptyrs (Liraglutide) incretin inhibitor effect is not lost; ~50% of fractures resulted in severe disability.41

- ↑ lower limb amputation; canagliflozin 100-300 mg vs placebo follow up 3.6yr; ↑ all amputation 6.3/1000ptyrs (Canagliflozin) vs 3.4/1000ptyrs (Liraglutide) (HR 1.97, 95% CI 1.41-2.75) & ↑ major amputation (ankle, below/above knee) 1.8/1000ptyrs (Canagliflozin) vs 0.3/1000ptyrs (Liraglutide) (HR 5.5/1000ptyrs).42, 43

- ↑ bladder infection; SGLT2 inhibitor vs placebo OR 1.34 (1.03-1.74, 95% CI 1.04-1.55), vs active agent: OR 1.42 (1.06-1.9, 95% CI 1.2-2.5).44

- ↑ UTI; SGLT2 inhibitor vs placebo OR 3.50 (2.46-4.99, 95% CI 1.04-1.55), vs active agent: OR 5.06 (3.44-7.45, 95% CI 1.04-1.55).44

- ↑ bladder/breast cancer; approved by FDA 2014 (rejected in 2012 due to breast & bladder cancer concerns). Dapagliflozin vs control; bladder cancer: n=10 cases vs n=1 case & breast cancer: n=12 cases vs n=3 cases (up to 2013).45
References: Death/MAE

37. Summary Safety Review- SGLT2 Inhibitors (canagliflozin, dapagliflozin, empagliflozin)- Assessing the risk of the body producing high levels of acid in the blood (diabetic ketoacidosis).
39. Summary Safety Review- Inhibitors (canagliflozin, dapagliflozin)- Assessing the risk of the body producing high levels of acid in the blood (diabetic ketoacidosis).

DISCLAIMER: The content of this newsletter represents the research, experience and opinions of the authors and not those of the Board or Administration of Saskatoon Health Region (SHR). Neither the authors nor Saskatoon Health Region nor any other party who has been involved in the preparation or publication of this work warrants or represents that the information contained herein is accurate or complete, and they are not responsible for any errors or omissions or for the result obtained from the use of such information. Any use of the newsletter will imply acknowledgment of this disclaimer and release any responsibility of SHR, its employees, servants or agents. Readers are encouraged to confirm the information contained herein with other sources. Additional information and references online at www.RxFiles.ca

Copyright 2017 – RxFiles, Saskatoon Health Region (SHR) www.RxFiles.ca